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This talk’s not really about astrophysics. . .

The second part of this talk makes a case study
using astrophysical data

However, the methodolgy we’ll explore can be
used to model any observation which varies
through time.



A tale of two parts

• Bayesian & frequentist statistics
• The two approaches and how they di�er
• An introduction to MCMC and Stan

• Sunspot occurrence
• What they are and why we should care
• Autoregressive models
• Model �tting and results



Bayesian & frequentist statistics



Frequentist statistics

• This approach to statistics will be familiar
to most

• Think p-values, hypothesis testing,
con�dence intervals etc.

• However, it is not the only statistical
framework (nor is it the focus of this talk. . . )



Bayesian vs. frequentist statistics

The di�erence between Bayesians and frequentists lies in the interpretation of
probability. . .

For a frequentist:
An event’s probability is the limit of its relative frequency in many trials

For a Bayesian:
An event’s probability is a degree of belief



Why Bayesian?

• Philosophically aligns with how we practice science: updating our beliefs in
light of new evidence

• Allows the inclusion of expert information through a prior distribution
• For events that only occur once, how appropriate is a methodology which
relies on repeatability?



Bayes’ Theorem

π(θ | x) = π(θ) L(x | θ)∫
Θ π(x | θ)dθ

• π(θ) represents our prior beliefs

• L(x | θ) is the likelihood of observing x given
the model & parameters θ

•
∫

Θ π(x | θ)dθ is the normalising constant
(probability of x)

• π(θ | x) represents our posterior beliefs
Figure 1: Purportedly Bayes



Bayes’ Theorem

Typically,
∫

Θ π(x | θ)dθ is very di�cult to
compute.

Instead we o�en consider:

π(θ | x) ∝ π(θ)× L(x | θ)
posterior ∝ prior× likelihood

Figure 1: Purportedly Bayes



MCMC

• MCMC — Markov Chain Monte Carlo
• Class of algorithms used to sample from
probability densities

• We can use them to sample from π(θ | x),
our posterior distribution

• Avoids the computation of π(x)



Stan

• Probabilistic programming language wrote
in C++. Accessed via interfaces with Python,
R, Matlab, Julia. . .

• Stan implements current state-of-the-art
MCMC algorithms

• Named a�er Stanislaw Ulam, a
mathematician and nuclear physicist and
pioneer of Monte-Carlo methods.

Figure 2: Stanislaw & the FERMIAC



Sunspot occurrence: a case study



What are sunspots and who cares anyway?

• Dark regions which appear on the surface
of the sun

• Cooler areas, caused by concentrations of
magnetic �eld �ux

• Precursor to more dramatic events such as
solar �ares and coronal mass ejections

• Signi�cant concern for astronauts living in
space, airline passengers on polar routes
and satellite engineers

Figure 3: Sunspots



The data

We shall use the annual data for the
International Sunspot number, under
the responsibility of the Royal
Observatory in Belgium since 1980.

Figure 4: Royal observatory of Belgium



The data
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Autoregressive models

Autoregressive models predict future behaviour given past behaviour

An AR(p) model:

Xt ∼ Normal(µt, σ2)
µt = α+ ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + . . .+ ϕt−pXt−p



In the �esh: AR(1) processes
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Normal AR(1)model

St ∼ Normal(µt, σ2)
µt = α+ ϕSt−1

Given the observed data can we infer the parameters α, ϕ and σ?



Results: summary

Parameter mean 2.5% 97.5% ESS

α 14.89 8.54 21.30 4800
ϕ 0.82 0.75 0.88 4900
σ 35.86 33.17 38.72 6400

Table 1: Summary of posterior samples a�er running Stan for 10 000 iterations (3
seconds).



Results: posterior densities
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Results: posterior predictives
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Negative Binomial AR(1)model

St ∼ NB(pt, θ)
pt = θ/(θ + µt)

log(µt+1) = α+ ϕSt−1

Given the observed data can we infer the parameters α, ϕ and θ?



Results: posterior predictives
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Conclusion

• Modern computing power is making Bayesian methodologies more
accessible

• Many ‘black-box’ MCMC implementations make inference (relatively)
pain-free

• The inclusion of prior information can be useful for events which have
limited observational data



People who liked this also liked. . .

Suitable bed time reading: Not suitable bed time reading:
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