Bayesian Statistics in Astrophysics

Jack Walton November 26, 2019

Newcastle University

The second part of this talk makes a case study using astrophysical data

However, the methodolgy we'll explore can be used to model *any* observation which varies through time.

- Bayesian & frequentist statistics
 - The two approaches and how they differ
 - An introduction to MCMC and Stan
- Sunspot occurrence
 - What they are and why we should care
 - Autoregressive models
 - Model fitting and results

Bayesian & frequentist statistics

- This approach to statistics will be familiar to most
- *Think p*-values, hypothesis testing, confidence intervals etc.
- However, it is not the only statistical framework (nor is it the focus of this talk...)

The difference between Bayesians and frequentists lies in the interpretation of probability...

For a *frequentist*:

An event's probability is the limit of its relative frequency in many trials

For a *Bayesian*:

An event's probability is a degree of belief

- Philosophically aligns with how we practice science: updating our beliefs in light of new evidence
- Allows the inclusion of expert information through a prior distribution
- For events that only occur once, how appropriate is a methodology which relies on repeatability?

Bayes' Theorem

$$\pi(\theta \,|\, \mathbf{X}) = \frac{\pi(\theta) \, L(\mathbf{X} \,|\, \theta)}{\int_{\Theta} \pi(\mathbf{X} \,|\, \theta) \, \mathrm{d}\theta}$$

- + $\pi(\theta)$ represents our prior beliefs
- $L(\mathbf{x} \mid \theta)$ is the likelihood of observing \mathbf{x} given the model & parameters θ
- $\int_{\Theta} \pi(\mathbf{x} \mid \theta) \, d\theta$ is the normalising constant (probability of \mathbf{x})
- $\pi(\theta \,|\, \mathbf{x})$ represents our posterior beliefs

Figure 1: Purportedly Bayes

Typically, $\int_{\Theta} \pi(\mathbf{x} \mid \theta) d\theta$ is very difficult to compute.

Instead we often consider:

 $\pi(\theta \,|\, \mathbf{x}) \propto \pi(\theta) imes \mathbf{L}(\mathbf{x} \,|\, \theta)$ posterior \propto prior imes likelihood

Figure 1: Purportedly Bayes

- MCMC Markov Chain Monte Carlo
- Class of algorithms used to sample from probability densities
- We can use them to sample from $\pi(\theta \mid \mathbf{x})$, our posterior distribution
- Avoids the computation of $\pi(\mathbf{x})$

- Probabilistic programming language wrote in C++. Accessed via interfaces with Python, R, Matlab, Julia...
- Stan implements current state-of-the-art MCMC algorithms
- Named after Stanislaw Ulam, a mathematician and nuclear physicist and pioneer of Monte-Carlo methods.

Figure 2: Stanislaw & the FERMIAC

Sunspot occurrence: a case study

What are sunspots and who cares anyway?

- Dark regions which appear on the surface of the sun
- Cooler areas, caused by concentrations of magnetic field flux
- Precursor to more dramatic events such as solar flares and coronal mass ejections
- Significant concern for astronauts living in space, airline passengers on polar routes and satellite engineers

Figure 3: Sunspots

We shall use the annual data for the International Sunspot number, under the responsibility of the Royal Observatory in Belgium since 1980.

Figure 4: Royal observatory of Belgium

The data

Autoregressive models predict future behaviour given past behaviour An AR(p) model:

 $\begin{aligned} X_t &\sim \mathsf{Normal}(\mu_t, \sigma^2) \\ \mu_t &= \alpha + \varphi_1 X_{t-1} + \varphi_2 X_{t-2} + \varphi_3 X_{t-3} + \ldots + \varphi_{t-p} X_{t-p} \end{aligned}$

In the flesh: AR(1) processes

$$\mathbf{S}_t \sim Normal(\mu_t, \sigma^2)$$

 $\mu_t = lpha + arphi \mathbf{S}_{t-1}$

Given the observed data can we infer the parameters α , φ and σ ?

Parameter	mean	2.5%	97.5%	ESS
α	14.89	8.54	21.30	4800
arphi	0.82	0.75	0.88	4900
σ	35.86	33.17	38.72	6400

Table 1: Summary of posterior samples after running Stan for 10 000 iterations (3 seconds).

Results: posterior densities

Results: posterior predictives

$$egin{aligned} & \mathsf{S}_t \sim \mathsf{NB}(p_t, heta) \ & p_t = heta/(heta+\mu_t) \ & \mathsf{og}(\mu_{t+1}) = lpha + arphi \mathsf{S}_{t-1} \end{aligned}$$

Given the observed data can we infer the parameters α , φ and θ ?

Results: posterior predictives

- Modern computing power is making Bayesian methodologies more accessible
- Many 'black-box' MCMC implementations make inference (relatively) pain-free
- The inclusion of prior information can be useful for events which have limited observational data

People who liked this also liked...

Suitable bed time reading:

Not suitable bed time reading:

Joseph M Hilbe, Rafael S De Souza, and Emille EO Ishida. Bayesian models for astrophysical data: using R, JAGS, Python, and Stan. Cambridge University Press, 2017.

Thanks